The hardest LL(k) language

MIKHAIL MRYKHIN AND ALEXANDER OKHOTIN

St. Petersburg State University, Russia

August 18, 2021

Part I

Introduction to hardest languages

э

• NP-hard sets: polynomial-time reductions.

- NP-hard sets: polynomial-time reductions.
- Homomorphisms: weakest possible reductions.

- NP-hard sets: polynomial-time reductions.
- Homomorphisms: weakest possible reductions.

Hardest language in a family

 L_0 : for all L there is h_L with $L = h_L^{-1}(L_0)$.

- NP-hard sets: polynomial-time reductions.
- Homomorphisms: weakest possible reductions.

Hardest language in a family

 L_0 : for all L there is h_L with $L = h_L^{-1}(L_0)$.

• Greibach's "hardest context-free language" (1973).

- NP-hard sets: polynomial-time reductions.
- Homomorphisms: weakest possible reductions.

Hardest language in a family

 L_0 : for all L there is h_L with $L = h_L^{-1}(L_0)$.

- Greibach's "hardest context-free language" (1973).
- A parser for L_0 can parse every language.

Known results

• Which standard families have hardest languages?

э

Known results

• Which standard families have hardest languages?

Model	Result	Author(s)	Year
Context-free languages	+	Greibach	1973
Deterministic languages	-	Greibach	1974
Linear grammars	-	Boasson and Nivat	1977
Counter automata	-	Autebert	1979
Regular languages	-	Culik and Maurer	1979
Two-sided nondeterministic	+	Rytter	1981
stack automata			
Multihead [stack] automata	+	Miyano	1983
Conjunctive grammars	+	Okhotin	2016
Linear conjunctive grammars	-	Mrykhin and Okhotin	2021
Linear-time cellular automata	+	Mrykhin and Okhotin	2021

э

Known results

• Which standard families have hardest languages?

Model	Result	Author(s)	Year
Context-free languages	+	Greibach	1973
Deterministic languages	-	Greibach	1974
Linear grammars	-	Boasson and Nivat	1977
Counter automata	-	Autebert	1979
Regular languages	-	Culik and Maurer	1979
Two-sided nondeterministic	+	Rytter	1981
stack automata			
Multihead [stack] automata	+	Miyano	1983
Conjunctive grammars	+	Okhotin	2016
Linear conjunctive grammars	-	Mrykhin and Okhotin	2021
Linear-time cellular automata	+	Mrykhin and Okhotin	2021

Part II

The curious case of LL(k) grammars

M.MRYKHIN AND A.OKHOTIN

The hardest LL(k) language

August 18, 2021 5 / 13

3

• A classical family with linear-time parsing.

< 4[™] >

э

- A classical family with linear-time parsing.
- String read from left to right, top-down parsing.

- A classical family with linear-time parsing.
- String read from left to right, top-down parsing.
- The rule to apply determined by the next k input symbols.

- A classical family with linear-time parsing.
- String read from left to right, top-down parsing.
- The rule to apply determined by the next k input symbols.
- Parsing table: $T: N \times \Sigma^{\leq k} \to R$.

- A classical family with linear-time parsing.
- String read from left to right, top-down parsing.
- The rule to apply determined by the next k input symbols.
- Parsing table: $T: N \times \Sigma^{\leq k} \to R$.
- LL(k+1) grammars more powerful than LL(k).

- A classical family with linear-time parsing.
- String read from left to right, top-down parsing.
- The rule to apply determined by the next k input symbols.
- Parsing table: $T: N \times \Sigma^{\leq k} \to R$.
- LL(k + 1) grammars more powerful than LL(k).
- Greibach normal form: all rules $X \to sY_1 \dots Y_\ell$, with $s \in \Sigma$.

Theorem

There is a hardest language for LL(1) grammars in Greibach normal form.

э

Theorem

There is a hardest language for LL(1) grammars in Greibach normal form.

• In a rule $X \to sY_1 \dots Y_\ell$, the lookahead is s.

Theorem

There is a hardest language for LL(1) grammars in Greibach normal form.

- In a rule $X \to sY_1 \dots Y_\ell$, the lookahead is s.
- Encoded rule: $\rho(X_i \to sX_{j_1} \dots X_{j_\ell}) = a^{j_\ell} c \dots a^{j_1} c$

Theorem

There is a hardest language for LL(1) grammars in Greibach normal form.

- In a rule $X \to sY_1 \dots Y_\ell$, the lookahead is s.
- Encoded rule: $ho(X_i o sX_{j_1} \dots X_{j_\ell}) = a^{j_\ell} c \dots a^{j_1} c$
- Image of a symbol: $h(s) = \left(\prod_{i=1}^n b\rho(T(X_i, s))\right) \#$

Theorem

There is a hardest language for LL(1) grammars in Greibach normal form.

- In a rule $X \to sY_1 \dots Y_\ell$, the lookahead is s.
- Encoded rule: $ho(X_i o sX_{j_1} \dots X_{j_\ell}) = a^{j_\ell} c \dots a^{j_1} c$
- Image of a symbol: $h(s) = \left(\prod_{i=1}^n b\rho(T(X_i, s))\right) \#$
- a and b link nonterminals to rules

Theorem

There is a hardest language for LL(1) grammars in Greibach normal form.

- In a rule $X \to sY_1 \dots Y_\ell$, the lookahead is s.
- Encoded rule: $ho(X_i
 ightarrow sX_{j_1} \dots X_{j_\ell}) = a^{j_\ell} c \dots a^{j_1} c$
- Image of a symbol: $h(s) = \left(\prod_{i=1}^n b\rho(T(X_i, s))\right) \#$

• a and b link nonterminals to rules

• Would this work for LL(2) grammars?..

э

• • • • • • • • • •

• Would this work for LL(2) grammars?..

Theorem

• Would this work for LL(2) grammars?..

Theorem

The family of LL(2) grammars in Greibach normal form cannot be reduced to a single LL(k) language by homomorphisms.

• $L = \Sigma \cup \{aa \mid a \in \Sigma\}$

• Would this work for LL(2) grammars?..

Theorem

- $L = \Sigma \cup \{aa \mid a \in \Sigma\}$
- If reducible, then both h(a) and h(aa) must be in L_0 .

• Would this work for LL(2) grammars?..

Theorem

- $L = \Sigma \cup \{aa \mid a \in \Sigma\}$
- If reducible, then both h(a) and h(aa) must be in L_0 .
- LL(k) parser for L_0 after reading the k-th last symbol of h(a).

• Would this work for LL(2) grammars?..

Theorem

- $L = \Sigma \cup \{aa \mid a \in \Sigma\}$
- If reducible, then both h(a) and h(aa) must be in L_0 .
- LL(k) parser for L_0 after reading the k-th last symbol of h(a).
 - On input h(aa), must encode a in the stack.

• Would this work for LL(2) grammars?..

Theorem

- $L = \Sigma \cup \{aa \mid a \in \Sigma\}$
- If reducible, then both h(a) and h(aa) must be in L_0 .
- LL(k) parser for L_0 after reading the k-th last symbol of h(a).
 - On input h(aa), must encode a in the stack.
 - On input h(a), at most k symbols in the stack.

• LL(1): a rule $X \to sY_1 \dots Y_\ell$ contains its lookahead.

э

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- LL(1): a rule $X \to sY_1 \dots Y_\ell$ contains its lookahead.
- LL(2): may be split between two rules.

3

(日) (四) (日) (日) (日)

- LL(1): a rule $X \to sY_1 \dots Y_\ell$ contains its lookahead.
- LL(2): may be split between two rules.
- How to bufferize these lookaheads?

< /⊒ ► < Ξ ► <

- LL(1): a rule $X \to sY_1 \dots Y_\ell$ contains its lookahead.
- LL(2): may be split between two rules.
- How to bufferize these lookaheads?
- Different queue contents enumerated.

- LL(1): a rule $X \to sY_1 \dots Y_\ell$ contains its lookahead.
- LL(2): may be split between two rules.
- How to bufferize these lookaheads?
- Different queue contents enumerated.
- Queue contents listed in symbols' images.

- LL(1): a rule $X \to sY_1 \dots Y_\ell$ contains its lookahead.
- LL(2): may be split between two rules.
- How to bufferize these lookaheads?
- Different queue contents enumerated.
- Queue contents listed in symbols' images.
- ... and linked to each other like nonterminals.

- LL(1): a rule $X \to sY_1 \dots Y_\ell$ contains its lookahead.
- LL(2): may be split between two rules.
- How to bufferize these lookaheads?
- Different queue contents enumerated.
- Queue contents listed in symbols' images.
- ... and linked to each other like nonterminals.

• Still cannot parse the last k - 1 symbols remaining.

- Still cannot parse the last k 1 symbols remaining.
- Add an explicit endmarker to parse the "tail".

- Still cannot parse the last k 1 symbols remaining.
- Add an explicit endmarker to parse the "tail".

- Still cannot parse the last k 1 symbols remaining.
- Add an explicit endmarker to parse the "tail".

Theorem

There exists such LL(1) language L_0 that for every LL(k) language L there exists a representation of L\$ as $h_L^{-1}(L_0)$ for some homomorphism h_L .

Part III

Conclusion

M.MRYKHIN AND A.OKHOTIN

The hardest LL(k) language

August 18, 2021 11 / 13

2

< □ > < □ > < □ > < □ > < □ >

Potential avenues of research

э

★ ∃ ► < ∃ ►</p>

Image: Image:

Potential avenues of research

• old problem: still open for some classic language families

Potential avenues of research

• new problem: generalized reductions for "already solved" families?

Thanks for your attention!

- ∢ ⊒ →

Image: A match a ma

э